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It is shown that bandlimited L"·functions can be reconstructed by sampling
series of Lagrange type with knots {In) ne Z whenever Itn- nl :E; L < min {l/2p, n
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1. INTRODUCTION

Let B£ denote the space of all LP(R)-functions that are bandlimited to
[ - f3, f3] (see Section 2). The classical Whittaker-Shannon-Kotel'nikov
sampling theorem [16, 17, 12, 5] states that

sin n(z - n)
f(Z)=II~LCf.Cf(n) n(z-n) (z E C), (1.1 )

i.e., the function f can be reconstructed from its values at the integers,
provided that f E BE for I ~ p <x, f3 ~ n or p = x, f3 < n. Setting 111 := n,
G(z) := n I sin nz, formula (1.1) can we rewritten as

. ~ G(z)
}(z) = II~L. x f(t,,) G'(t,,)(z - t,J (ZEC). (1.2 )

The function G can be interpreted as a canonical product with respect to
the integers (cr. Section 3), i.e.,

G(z)=z fI (1-~)(1-~).
k ~ I I" t .. II

(1.3 )

Hence in view of (1.2), (1.3) it is justified to call the sampling series (1.1)
a Lagrange interpolation formula with infinitely many knots (cf. [10]).

The classical sampling theorem is often referred to as the uniform
sampling theorem because the underlying sequence of knots (the sequence
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of integers) is equidistantly spaced. Nonuniform, or irregular, sampling
theory investigates which not necessarily equidistantly spaced sequences of
sampling knots admit the reconstruction of bandlimited functions; in
particular, it is asked under which assumptions on f and {t"},, E Z do the
formulas (1.2), (1.3) remain valid.

The most common condition used for describing nonuniform sampling
sequences is

(nEZ) for some L~O. (1.4 )

In two papers, Higgins developed criteria that guarantee the validity of
(1.2), (1.3). In [6] he uses Hilbert space techniques to prove that (1.2),
(1.3) hold, if p = 2, L < L and in [7] he could show by function theoretic
means that one may choose L < 1/4p, provided I < P :s; 2.

In the present paper Higgins' results are extended to all spaces B~,

I :S; p < ,x;, and a better bound for L is established as well. Indeed, (1.2)
holds whenever.

{

I

L 4'
< 1/2p,

l:S;p:s;2

2:s; p < 00.

This assertion is established in Section 4. The proof is based on an
inequality due to Korevaar and a sharpened version of some estimates of
Levinson (see Section 3). Section 5 deals with the absolute convergence of
the irregular sampling series; an inequality that compares the I "-norm of
{f(tn) }nE Z with the LP-norm off, given by Nikol'skii for uniform sequences
{ tn } n E z, is generalized to the nonuniform case. In Section 6 the new results
are applied to two modifications of the usual sampling process, namely
derivative sampling and oversampling.

Condition (1.4) is not the only condition that can be used to describe
irregular sampling sequences. Two other types of nonuniform sequences
also lead to interesting sampling series; first, sequences of type t n = n + D,
t _" = -t,,, n E N, to = a and, secondly, sequences that can be constructed
by merging several (equidistant) sequences ("periodic sampling"). These
types are investigated in [9, 3], respectively. A unified approach to all
these types of nonuniform sampling can be found in [8] (my doctoral
thesis). The most general result of [8] is cited at the end of Section 6.

2. PRELIMINARIES

Let N, Z, R, C denote the sets of natural, integer, real, and complex
numbers, respectively. For x E R, the floor function LxJ is defined to be the
largest integer ~ x.
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Let E c C and let 1,,12 be real-valued, nonnegative functions on E. Then
I, is equivalent to 12 on E (/, ~ 12 on E) if and only if there exist C" C 2

such that 0 < C, ~ C 2 and C,f,(z) ~f2(z) ~ Cd,(z) for z E E. Sometimes,
the well known, 0, (C'-notation will be used as well.

For 1~ p < 00, LP = LP(R) denotes the space of all Lebesgue measurable
functions f on R with 1I/II p := (r~"c I/(x)1 Pdx)'/P < 00, and JP is the space
of all sequences {t}={t"}nEZ of finite norm II{t}llp:=(L"Ezlt"IP)"p. As
usual, L OC(R) consists of all functions which are essentially bounded on R.

The spaces B;, 1~ p ~ 00, f3 ~ 0 are made up of all entire functions I
which are in LP when restricted to Rand fullfill I/(x + iy)1 ~
SUpuER I/(u)1 eP1 ,". X+iyEC. If a function belongs to the space B;, it is
called bandlimited to [-P, P], since its (distributional) Fourier transform
vanishes outside of [ - p, P]. Bandlimited functions can be estimated with
the help of several remarkable inequalities.

LEMMA 2.1. Let 1~p< 00, P~O, andfEBff.

(a) (Korevaar's inequality)

I/(z)1 ~ C ·ll/ll p( 1+ Iyl) l/PePlyl (z = x + iy E C),

(b) (Bernstein's inequality) 11f'llp~P·ll/llp.

Proof (a) See [11]. (b) Compare [14, p.llS]. I
In the calculations of this paper some formulas concerning the Gamma

function are needed, namely the functional equation r(z + 1) = zr(z)
(z E C\ { -n; n E N u {O} }), the ref7ection lormula l/(r(z) r(l - z» =
n - I sin nz, z E C, and the estimates given in the following lemma.

LEMMA 2.2. (a) Let IJ(, pER and Y/ > O. Then there holds

I
r(z + IJ() I~ IzI' P
T(z + P)

on

{Z=X+iyEC; Izi ~Y/, (x+IJ()~y/, (x+P)~y/}·

1.

Proof A partial proof can be found in [13], a detailed one is given in
[8, pp.l1-14]. I
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DEFINITION 3.1. (a) A sequence {t} = {t n } n E Z of real numbers is
called a perturbed equidistant sequence (with respect to the sequence of
integers), if there exists a constant L ~ 0 such that

(n E Z).

(b) The canonical product with respect to a perturbed equidistant
sequence {t} is defined by

w

G(z):=G({t};z):=g(to;z) TI g(tk;Z)g(t_k;Z)
k~1

(z E C),

where g(s; z) := 1 - zls, if SE R\ {OJ and g(O; z):= z.

Since Ig(t k ;z)g(t_k;z)-1!=0(k- 2
) for large k, the product G(z) is

well defined and represents an entire function with zeros exactly at the
points tn' nEZ. The canonical product of Definition3.1(b) is closely
related to the canonical product investigated in function theory [1, p. 18;
8, p.25]. In sampling theory, G(z) is often defined with z - to instead of
g(to; z).

PROPOSITION 3.1. Let {t} be a perturbed equidistant sequence with L < ~

and to = O. Then there are constants C" C2 such that for all z = x + iy E C
with Izi large,

where

1,
N+2n Itk -zl,
k~N

-N

TI It k - zl,
-N-2

1/(z)l> 1

1/(z)1 ~ 1 and 9t(z) > 0,

1/(z)1 ~ I and9t(z) <0

o~ Isin 81 ~ sin(nI2Izl)
sin(nI2Izj) < jsin 81 ~ 1

(N = N(z) is a suitable index to be defined beloM" and d = L, - L,
respectively).
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Proof To begin with, assume that e= Arg z E [0, n/2) and, say, Izi ? 4.
Defining, for those z,

N:= N(z) := max{n E N; n + L ~ Izi/cos e} = L1zl/cos e- LJ, (3.2)

one has, in view of to = °and L < 1,

N-Il 711 7\N+2 I t -Zll 7!IG(z)1 = Izi Il 1-~ 1--~ Il _k_ 1--~
k=1 tk t- k k~N Itk! t_ k

x f1 11-":'lll-~I·
k~N+3 tk t_ k

A straightforward calculation shows that Ig(s; z)1 = 11 - z/sl, s E R\ {O}, as
function of s, decreases on (0, Izl/cos e) and increases everywhere else on
R \ {O} (see [13, p.56, Figure 2] for a geometric interpretation). Applying
this fact and Definition 3.1 (a), one obtains

11+---=--1 ~ 11-~1 ~'1 +---=--1k + L t_ k k - L

11 - k ~ LI ~ \1 - tl ~ \1 - k ~ L \

Hence one deduces,

(k EN),

(l ~k < N),

(N~k~N+2),

(k>N +2).

N+2 N+2
TI Itk-zIH(L;z)~IG(z)l~ TI [tk-zIH(-L;z)
k~N k~N

(eE [0, n/2), Izi ?4),

N-11 7 II 7 I
N

+
2

1 I 7 IH(d;z):=lz[ }!l l- k : d l+ k : d ))N k + d l+ k : d

w I 7 \ \ z \x Il l--~- 1+-.
k~N+3 k-d k+d

By the functional equation of the gamma function, Lemma 2.2(b), and the
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reflection formula, one has, provided dE [ - L, L] and z #- k + d for all
kEN,

x T(N+3+d)r(l +d+z)T(N+3-d-z)

= Izi r 2(1 + d) I T(z - d) I
T(z+ 1+d)

x!T(N+3-d)IIT(N+3+d-Z)!
T(N+3+d) T(N+3-d-z)

I
sin rr(z - d) I

x rrIlZ~o(N+k+d-z)' (3.3)

I
N-l N+2k+d+z

H(d;z)= z n (k+d-z) n k 2
k~1 k~l ( +d)

x lim fI (k-d-Z)(k+d+Z)!
M~x k=N+3 (k-d)(k+d)

=/z )~( (k+d-z)

T(N+3+d+z)(r(1 +d»)2 T(N+3-d)
x--'-------'-----;-'--'--------'-

T(l +d+z)(T(N+3+d))2 T(N+3-d-z)

r(N + 3 + d)
x --'-----'--

T(N+3+d+z)

lim T(M+l-d-Z)r(M+l+d+z)I
M ~ x T(M + 1- d) r(M + 1+ d)

I
r(N+d-z)T(z-d)

=Izi r(1-(z-d»)T(z-d)

T(N + 3 - d) r
2
(1 + d) I

Formula (3.3) contains three quotients of gamma functions which can be
estimated by help of Lemma 2.2(a); in fact,

I
T(z - d) I 1 IT(z + 1 - d) I -1 - 2d

T(z + 1+ d) = Iz - dl r(z + 1 + d) - Izi ,

I
r(N+3-d)I~N_2d
T(N+3+d) ,

I
T( N + 3 + d - z) 1_ (N + 3 - L - Z I ld.

r(N +3 -d -z)
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In view of (3.2), N -Izl/cos e and N + L::;; Izi/cos e < N + L + 1, which
implies that Izl = (N + L) cos e+ ~ I cos e for some ~ IE [0, 1). Thus, setting
~2 := 3 - ~ 1- 2L,

I 3 I
\Z\ . IN+ -L-zl= ;;;;e-L-~,+3-L-lzl(cose+isme)

(
Izl )2
~ + ~2 -izi cos e + (Izl sin e)2

J ( COS e)= \z12 tan 2e I + 2~2 /;j + ~;.

Note that ~2E(I,3J, (1+2~2cose/lzl)E(I,5/21If 0::;; e::;;nl(2Izl), then
tane=sinelcose::;;(n/(2Izl))/cos(n/4)::;;n~2/(v"2Izl),and hence one has
in this case Izl 2 tan 2 e(1 +2~2COSe/lzl)::;;~n2~;. But is n/(2Izl)<e<nI2,
then tan e? sin e? 2e/n? 2~2/(5Izl},and~;::;; ~lzl2 tan2 e(l + 2~2 cos e/lz!).
One obtains

{
~2 ~ 1

IN+3-L-zl- '
Izi tan e,

and, as a cansequence,

0::;; 8::;; nl(2Izl)

n/(2\z\)<8<n/2
(3.4)

o I F(z - d) II F( N + 3 - d) II T( N + 3 + d - z) I
IzIT~(I+d) F(z+l+d) F(N+3+d) T(N+3-d-z)

~1"'1-4d( 8)2d{l, 0::;;8::;;n/(2Izl).. cos 0 0
Izl~d(tan e)_d, nl(2Izl) < 8 < nl2

{
IZI 4", 0::;; 8::;; n/(2Izl)

-0 . - H 2(d; z).
Izi - ~d(sm 8)2", nl(2Izl) < 8 < nl2

It has still to be shown that

Let /(z»1. Then Isin(z-d)l-exp(ny), since Isinn(z-d)1 2=
sin 2n(x-d)+sinh2ny and sin 2n(x-d)E[0, IJ as well as sinh 2 ny=
(1 - e - 2rrlY exp(2ny )/4 _ e2rr

'. In addition,

TI~:~ltk-zl _ TI /(N-Z)+(t N + k-N)I_l
TI;~o(N+k+d-z)-k~O (N-z)+(k+d)
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since ItN+k-NI~2+L, Ik+dl~2+L and I(N-z)+(tN+k-N)I~

L/(z)l> I, I(N-z)+k+dl > I. Let O~f(z)~ I. Then

I
sin n(z - d) I I sin n(z - N - d) I

nn~=o(N+k+d-z) = nnLo(z-N-d-k)-1

since, on the one hand, sin nwl(n ni ~ 0 (w - k)) is a nonvanishing,
continuous function on [- t, 2] x [0, I] and, on the other hand,
9f(z - N - d) E [ -1/3,2], f(z - N - d) E [0, I], since 9f(z) ~ Jl5> 3,
provided f(Z)E [0, I], 9l(z»O and Izi >4, and after plugging in (3.2),

N+L_l$.o/((7)=J:L_,,2(Z)$.N+L+ I
3 --::: •. ~ cos e 9l(z) '" .

So far, inequality (3.1) is proved for all z E C with Izi ~ 4, eE [0, n12) and
z -# k ± L for all kEN. The case z = k ± L can be settled by explicit calcula
tion of nr:: i in terms of factorials. The estimates on the upper part of the
imaginary axis are very similar to those presented above except that there
is no need to introduce an index N. To complete the proof, note the sym
metry properties of G,

G( {t}; z) = G( {t}; z),

G({t}; -z)= -G({t*};z),

where t:= -t_ fl , nEZ; evidently Itf~-nl ~L<! and tt=O. I

Remark 3.1. A much more detailed proof, which is also valid for cer
tain other types of nonuniform sequences, is given in [8, pp. 29-51]. Parts
of the above proof are due to Levinson [13, pp.56-57]; the essential
improvement of the results obtained by Levinson is the equivalence
relation (3.4).

4. THE NONUNIFORM SAMPLING THEOREM

DEFINITION 4.1. Let {t} be a perturbed equidistant sequence with
L < 1/2, to = 0, and G the corresponding canonical product. The nth
reconstruction function «['fl, nEZ, is given by

ZEC\{t,,}

z = tff'
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If {t} is the sequence of integers, then 'Pn(z)=sinc(z-n). Note that
the choice of 'Pn(tn) makes 'Pn an entire function with the "interpolatory
property" 'Pn(tm) = bnm for m, n EZ.

THEOREM 4.1. Let {t} be a perturbed equidistant sequence, to = 0 and G
the canonical product with respect to {t}. If 1 ,,;; p < 00 and

then for all f E B~,

{

I

L 4'
< 1/2p,

1";;p,,;;2

2,,;;p<00,
(4. t)

(4.2)

uniformly on each bounded subset B of the complex plane.

Proof Consider the positively oriented Jordan curves S'.m defined by

S"m := {Rme ill
; -n12 < () < n12} u [Rmi, - R_,i]

u {-R_,e'lI; nl2 < ()< 3n12} u [R_,i, -Rmi] (m E N u {O}, IE N).

where R n = n +~, nEZ, i.e., the contour S,.m consists of two semicircles
with radii Rm , - R _I and those parts of the imaginary axis which connect
the endpoints of the semicircles. The numbers R n are chosen in such a way
that tn<Rn<tn+ l , nEZ, and IRn-tml ~~-L for all m,nEZ, m#n.

An application of the residue theorem yields for all lEN, mEN u {O}
and zEint(S"n,) with z#tn, nEZ,

G(Z)f f(O
£1.m(z):=-2· G(Y)(Y_7)dC

m S',m ~ ~ -

( (
f(-) )

= G(z) Res G(.)( .-z); z

(
f(·) ))+ L Res ; t n

n such that G( . )( . - Z)
R-l<ln<Rm

m G(z)
= f(z) - n~ ~+ I f(tn) G'(tn)(Z - tn) (4.3 )

The interpolatory property of the functions 'Pn implies that
f(z) = L;~ _'+ I f(t n) 'Pn(z) simultaneously for all z = tn in B, provided m,
I are large enough. Thus, if e,.m(z) vanishes uniformly on B (which will
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be shown in the rest of the proof), the assertion of the theorem is a
consequence of (4.3).

By application of Lemma 2.I(a) and Proposition 3.1, it is possible to
estimate f(z) from above and G(z) from below on the countours S'.m'
Indeed, for any R > 0, 8 E ( - n12, n12) u (nI2, 3n12) and for any y E R,
respectively, one has

If(ReiA)1 ~ C IIfll p
( 1+ IR sin 81) -lip e"IRsinAJ, (4.4)

If( yill ~ C Ilfll p ( I + Iyl )-I/p e"I)I. (4.5)

If 8 E ( - n12, n12) u (nI2, 3n12) and R is large enough

IG(ReiA)1 ~ CH1(Re iO ) H 2(L; Re iA ),

• i!J {R -4L, °~ Isin 81 ~ sin(nI2R)
H2(L, Re ) = R -2L Isin 81 2L, sin nl2R < Isin 81 ~ 1.

(4.6 )

(4.7)

The growth behaviour of HI on the semicircles of the contours S,.m is given
by

HdRme iA )~ Ce"IRnsin 81

HI ( - R _,eiO) ~ Ce"IR_1sin AI

(m ENlarge, -n12 < 8 < nI2),

(l ENlarge, nl2 < 8 < 3nI2).

(4.8)

(4.9)

These inequalities are a consequence of the definition of HI> given in
Propositionll; in fact, in case of -nI2<8<nI2 (the other case is
analogous) one has, noting that J!'(z) > 0, R m > 0, t N ~ 0,

On the imaginary axis a corresponding estimate can be established
provided Iyl is large enough, namely,

IG(}'i)1 ~ Ce"I'·IIYI-2L. (4.10)

Now one can estimate the contour integral. Obvious substitutions lead to
the representation

f-
Rm f(yi)i }+ dy .

R_I G(yi)(yi-z)
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Assuming that ZEB and I, m are large, IRmeie_zl~IIRml-lzll~

Rm-suP=EBlzl~CRm, and likewise I-R ,eiO-zl~CIR_II. Thus one
obtains, applying (4.4 )-(4.10),

11:/.m(z)1 ~ C 11!ll p [R~~' fil
2R

ml (1 + IR", sin (1) lip d8
n/(2Rml

2L {f n..
iI2R

ml f
n

..
i2

} (1 + IR m sin (1)-I/p+ R m + . 21 d8
ni2 nl2Rm J Ism 81 ~

OL{fn.. +n/12R tl f3ni2.. }(1+ I R_ / Sin8 1)-liP

+ IR_/I" + . 2L d8
ni2 n nil2R il Ism 81

{f m.aX{Rm. -R-tl fmaxiR_I. Rml} (1 + Iy!)-I/P ,]
+ + 1- 2L d}

mm{Rm.-R·d min[R I. Rml Iyl

+CII!ll p

~CII!llp{R~~' 1+IR ,1 4
l. I}

R;,;- 1+ IR _/1 4L
- I,

2L + lip> 1
R;,; -I log R", + IR_ /1

4L
- 1 log IR _II,

2L+ 11p= 1
R~L-\ip+ IR_/12L-liP,

2L + lip < 1

+ ClI!ll p Ie< , Iyl I+ IlL - lipl d.v.
mm,( R m • --- R-d

(4.11 )

(4.12)

(4.13 )

The expressions (4.11 )-(4.13) become arbitrarily smalI as m, I ~ 00, since
L<~ and L<1/(2p) (i.e., 2L-1Ip<O); in particular, all the terms in
(4.12) vanish if and only if both conditions are fulfilled. Thus, £I.",(Z) tends
to zero uniformly if I, m ~ O. This completes the proof. I

Remark 4.1. Theorem 4.1 contains a uniqueness criterion for band
limited functions, namely, let {t} and p be given as in Theorem 4.1, and
assume that!I,f2EB~ such that!l(tn)=!2(tn), nEZ. Then!I=!2 (on C).
For other uniqueness criteria for entire functions see, e.g., [2].

Remark 4.2. The assumption (4.1) may be weakened to the effect that
{t} is a strictly increasing sequence with to = 0 and

Itn -nl ~ min {2>n
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for a suitable no EN (see [8] for details). An important example are
sequences which approach the integers (i.e., It" - nl = 0(1), Inl -+ CI)),
arising quite naturally, e.g., from Sturm-Liouville boundary value
problems (cf. [18]). Here it is sometimes even possible to express the
reconstruction functions in terms of well known standard functions
(cf. [3,6,18]).

The proof of Theorem 4.1 gives flSe to an estimate of the so-called
truncation error.

COROLLARY 4.1. Let (T"f)(z) denote the truncation error, i.e.,

N

(T"f)(z) := f(z) - L f(t,,) P,,(z).
n = .- /'1l

Under the same assumptions as made in Theorem 4.1, B denoting an
arbitrary bounded subset of C, thereholds

p< 1/(1- 2L)

p= 1/(1-2L)

p> 1/(1- 2L).

Proof The estimate follows from (4.3) together with (4.11 H 4.13 ),
noting that R" = n +! and that I - 4L > lip - 2L if and only if
p> 1/(1-2L). I

5. ABSOLUTE CONVERGENCE

In some applications as, e.g., the generalization of the sampling theorem
to more than one dimension (cf. [4]), it is important that the cardinal
series is absolutely and hence unconditionally convergent. This cannot be
concluded from Theorem 4.1; another method of proof has to be chosen.
To start with, an inequality, given by Nikol'skii in the case of the uniform
knots [14, pp. 123-124], will be generalized to a class of nonuniform
sampling sequences which contains all the perturbed equidistant sequences
with L <!.

THEOREM 5.1. Let I ~ P < w, and let {t} be a sequence such that

(nE Z)
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for suitable constants <5, L. Then, for all fEB: ,

(5.1 )

Proof Applying the monotone convergence theorem, one obtains

rX

If(uW du
-,::f.:'

= f f"-' If(t" - x)IP dx ~ f r If(t" - x)IP dx
n= _.:y;, 0 n= -oc:,' 0

= r f If(t,,-x)IPdx~L·sup I If(t,,-x)IP.
0n=-CfJ xERn=~,x

This establishes the left inequality in (5.1). In view of the mean value
theorem and the monotone convergence theorem,

fX . If(xW dx= I r+ 1

If(x)IP dx= I <5"lf(~nW (5.2)
-,x n=-Cf.) I" n=-C(;,

for a certain sequence {O with tn<~,,<t"+l' nEZ. By Holder's
inequality, one has for 1 < p < 00 (q denoting the conjugate index)

(j" It" I'(x) dxIP
~(j,,((+III'(X)1 dXr

~ <5" (r+ 1 II'(xW dX) <5:lq = <5: r+ 1

II'(x)IP dx.
~ I"

Of course, this inequality is also true for p = 1. Using it, together with the
fundamental theorem of the calculus, the monotone convergence theorem
and Bernstein's inequality, one can conclude

c~~X <5"lf(~,,)-f(t,,)lPYIP

= C~~x 13" It" I'(x) dxlP)'IP ~ C=~ w b: (+1 II'(xW dx )'IP

~C~~oo £p (+I II'(XW dX)'/P

= L III' lip ~ Ln IIf11 p • (5.3)
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The formulas (5.2) and (5.3) mean that {e5~/Pf(~")}"Ez, {e5~/pr(~,,)

e5~Pf(t")}"EzEIP;hence {e5~/Pf(t,,)}nEzEIP and

(

X, ) lip ( x e5 ) lip
,,=~X If(t,,)IP ~ ,,=~X e5" If(t"IP

~ e5 -liP {C =~x e5" If(~,,) - f(t,,)/Prp

+ IIfllp}

~ e5 -liP( 1+ La) Ilfll p •

The right inequality in (5.1) follows, noting that the above argument
remains valid if the sequence {t} is replaced by any of the sequences
{t,,-X)"EZ' XER. I

Remark 5.1. Any perturbed equidistant sequence {t} with It,,-nl ~
L < ~, n E Z satisfies the assumption of Theorem 5.1 since 0 < 1 - 2L
~t"+I-t,,~1+2L.

THEOREM 5.2. Let 1~ p < 00, {t} be a perturbed equidistant sequence
with to = 0, and

L < 1/4p,

Then for all fEB: the series

p=1

1 < p < 00.

converges uniformly on each bounded subset of C.

Proof If B denotes an arbitrary bounded subset of C, C B := SUPxE B Izl,
and if no E N is suitably chosen, one has

Iz-t"I~C'lnl

IG'(t"ll ~ C ·In\-4L

IG(z)1 ~ C

(Inl ~ no, z E B),

(Inl ~no),

(z E B).

(5.4 )

(5.5)

(5.6)

Inequality (5.4) holds with no ~ 2CB +~, noting that Iz - t,,1 ~ It,,1 - C B ~

It"I/2. As to (5.5), in view of the symmetry properties of G it is no loss of

640/72/3·9
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generality to assume that n is positive. Noting that N(z) = n in the interval
In := (n - L, n + L) and that In is a cluster point of In' one obtains, taking
into account the estimate of G(z) from below given in Proposition 3.1

IG'()I I' IG(x) I I' . f -4L(
In = x~n X _ t

n
~ 1~I2 X tn + 1- X)(tn+2 - X)

within I" within I"

~ (I - 2L)(2 - 2L) It n l- 4L ~ C ·lnl- 4L.

Inequality (5.6) is an immediate consequence of the fact that G(z) is entire,
hence continuous.

Let m>/~no. By Holder's inequality (with q as conjugate index of p),
(5.4)-(5.6) and Theorem 5.1,

R ""- ~ I G(z) I',m(~) .- L. fUn) G'(t )(z - t )
f~lnl~m n n

p=1

I<p<oo

p=1

I < p < 00.

In case of p= I, L''';;lnl,,;;m IfUn)1 vanishes as 1-+ 00, since {jUn)}nezE/1
by Nikol'skii's inequality. The second factor sUPlnl ~ no Inl 4L - I is bounded
whenever L ~~. If 1 < P < 00 and L < 1/4p, then (4L -1)q < (lip - l)q =
-qlq= -I and L''';;lnl,,;;mln/(4L-l)q becomes arbitrarily small with 1
tending to infinity. Thus R',m(z) vanishes uniformly on B as 1-+ 00. By
Cauchy's convergence criterion, this proves the assertion of the theorem, I

6. MODIFICATIONS AND GENERALIZATIONS

This section contains two variants and a far-reaching generalization of
Theorem 4.1. The variants deal with derivative sampling and with over
sampling.



BANDLIMJTED LP-FUNCTIONS 361

THEOREM 6.1 (Derivative Sampling). Let r E N, {t} be a perturbed equi
distant sequence with to = 0, and G the canonical product with respect to {t}.
If 1~ p < oc and

I
1

4(r+l)'
L<

2p(r

l

+ 1)'

l~p~2

2~p<oo,

there holds lor all I E B ~(r + I)' uniformly on each bounded subset 01 C,

x r

I(z) = L I jli)(tn) !/Jr,n,,(Z)
n= -X) ;=0

Proof With S"m as in the proof of Theorem 4.1, define

(6,1)

Plugging in Korevaar's inequality to estimate IE B:(r+ l) from above and
Proposition 3.1 for a lower bound Gr + lone obtains, on the one hand,
arguing as in the proof of Theorem 4.1, that tt~(z)~ 0, I, m ~ 00

uniformly on each bounded subset of C. On the other hand, one calculates
for zEint(S'.m) and z¥-tn , nEZ,

Ir)(~)_/( ) ;, Gr+l(~)R ( 1(·) .)
I::',m" - Z - L. "es Gr+l(. (z_.),t n

n=-/+J )

Gr+l(z)( ~1((-tn)r+I)(rll
=/(z)- n=~+1 r! I«()(z-O G(O ,=/.

and (6.1) follows by double application of Leibniz' rule, noting that
d lJ jd(IJ«z - 0- 1

) = J.d(z - 0- 1
-1'. I

EXAMPLE 6.1. If r = I, the function I is reconstructed from the values of
I and f' at the knots tn' nEZ, and
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Remark 6.1. Higgins has established a similar result [7]; however, he
needs to assume that 1< p ~ 2 and L < 1/4p(r + 1).

THEOREM 6.2. (Oversampling). Let {t} be a perturbed equidistant
sequence with to = 0, and let G be the canonical product with respect to [t}.
If L <~, 1~ p ~ x, amlf E B[; for some f3 < n, then

f') "f'() G(z)
, (z =II~L. y' til G'(tIl)(Z-t,,)

unif(mnly on each bounded subset of C

(6.2)

Proof This sampling theorem can be proved in the same way as
Theorem 4,1. The proof is omitted here since Seip [15] and Higgins [7]
obtained the same result in this case (although their estimate of G was less
precise). I

Remark 6.2. The assumption "L < t in Theorem 6.2 is due to the con
vergence properties of the series (6.2). One can show (cf [9, 8]) that the
series (6,2) does not converge for arbitrary L. Nevertheless, the functions
fEB [;, If < n are always uniquely determined by the sequence {f( til)} II E z,
provided {t} is a perturbed equidistant sequence with respect to the
integers (see [8]),

All sequences known so far that give rise to a (nonuniform) sampling
series are perturbed equidistant sequences (with respect to some equidis
tant sequence), However, sometimes the characterization Itil - nl ~ L is not
precise enough; e.g., it does not show whether Itlll < Inl, or whether there
are subsequences {tll,}/EZ that fulfill a condition of type ItIlJ-n) ~L, <L.
In [8], a different way of describing nonuniform sequences is chosen. The
following theorem states the main results of this study; it generalizes the
results presented here.

THEOREM 6.3. For r E R, a > 0, D E R, and ,1 ~ ° let
pest {r + a {Z }}; D, ,1) denote the space of all sequences Ivith

T + an - aD ~ til ~ T + an - a(D -,1),

T + an + a(D -,1) ~ til ~ r + an + aD,

n~ -J

n~J

for some J EN. Let KEN and assume that {t} is a sequence that can be
constructed by merging suitable sequences {t 1}, ... , {td with {t,} E

pes({rj+aj{Z}}; D i , Ll j ) (1 ~j~K). Let W:=I.r=l a i 1, let G(z) be the
canonical product with respect to {t} and let {s} = {s,,} n E Z be the sequence
of zeros of G.
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If I ~ P ~ 00 and

( i) ,<;,K (2£...)=1 Dj + L1 j l<l,

(ii) I.:=I D;< 1/2p (:=0, if p=:x;),

363

then there is a strictly increasing sequence {R",} '" E z with lim", ~ ±x R", =
±:x;, such that for all f E B~w,

f(z) = lim
1--+ ·x_1'''' __ X n with

R _I < Sn < R",

(
f(·) )

G(z) Res G(-)(z _.); Sll

uniformly on B\ {Sll; n E Z}, where B is an arbitrary bounded subset of C.

Proof [8, pp. 56-61]. See also [9, 3]. I
Remark 6.3. If {t} is defined as in Theorem 6.3, there may be members

of {t} that occur several times. Then G has a zero of corresponding multi
plicity. It is always possible to express the residues in terms of derivative
values off and G, but then the corresponding formulas are rather unhandy.
Theorem 6.3 can be interpreted as a generalization of Hermite's interpola
tion formula to the situation of infinitely many knots.
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